FUNGI OF THE SARNIA SKAŁA MASSIF IN THE TATRA MOUNTAINS (POLAND)

ANNA RONIKIER

Abstract. This study is a detailed assessment of the diversity of agaricoid, boletoid, cyphelloid and cantharelloid fungi on the Sarnia Skåla massif (Tatra National Park, S Poland), a small calcareous mountain harboring lower montane beech forest, upper montane spruce-dominated forest, and a small area of subalpine dwarf mountain pine community. This investigation, the first comprehensive mycological study in the Tatra Mts, is based on repeated surveys of the whole study area and detailed observations in 12 permanent plots (four in each vegetation belt) through six vegetation periods (1999–2004). In total, 297 taxa were recorded in the study area, 115 (39%) of which have not been reported from the Tatra Mts before. Distribution maps and altitudinal range diagrams are given for all species in the study area, their known distribution in the Tatra Mts is briefly summarized, and 172 species rare in Poland are described in detail and their micromorphological features are illustrated. Also in the permanent plots, mycocoenological observations were made in order to distinguish groups of species locally characteristic of the typical plant associations occurring in the lower montane, upper montane and subalpine belts; 42 species were recognized as characteristic of lower montane beech forest, 8 of upper montane spruce forest, and 11 of dwarf mountain pine shrubland. A general biogeographical analysis of species recorded on the Sarnia Skåla massif revealed a relatively large group of 92 fungi representing the boreal-mountain element, associated with mountain areas and boreal forests and significantly contributing to the specificity of the fungi of mountain regions. A comparison of the study area’s fungal diversity with that of other mycologically investigated mountain ranges in the Alps and the Carpathians showed that the study site was most similar to the Swiss National Park and Berchtesgaden National Park. This comparison demonstrates that the diversity and species composition of fungi on the Sarnia Skåla massif is typical for high-mountain calcareous areas.

Key words: Agaricales, Boletales, Cantharellales, Russulales, diversity, boreal-mountain element, distribution, mycocoenology, Dentario glandulosae-Fagetum, Polysticho-Piceetum, Pinetum mugo carpaticum, Tatra National Park, Poland

Anna Ronikier, Department of Mycology, W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland; e-mail: a.ronikier@botany.pl

CONTENTS

INTRODUCTION ... 2
DESCRIPTION OF THE STUDY AREA 4
Location and borders 4
Topography 4
Hydrology 4
Geology 4
Soils .. 5
Climate 6
Vegetation belts 8
Human activity 10
MATERIAL AND METHODS 12
Subject of study 12
Field study methods 12
Laboratory methods 13
Explanation of abbreviations 13
RESULTS AND DISCUSSION 14
List of species, with notes on their distribution in the Tatra Mts 14
Species diversity of the fungi on the Sarnia Skåla massif: an assessment 167
Plant associations typical of the altitudinal belts of the Sarnia Skåla massif: vegetation and mycocoenological analysis 168
Indicator value of selected species of fungi on the Sarnia Skåla massif 176
Seasonality of the occurrence of fungi on the Sarnia Skåla massif 181
Comparison of the fungi in the study area and in other mountainous regions of Europe: boreal-mountain species 182
ACKNOWLEDGEMENTS 185
REFERENCES 185
ECODIAGRAMS AND DISTRIBUTION MAPS OF SPECIES 193